

### Software specific IP issues

Dr. Jakob Valvoda Diplom-Informatiker (Computer Science) Patent Attorney Munich

November 6, 2019

#### Outline

- Introduction: Software and IP
- Patenting Computer-implemented Inventions at the EPO
- Patenting enabling technologies
  - Artificial intelligence
  - Blockchain technology
- Practical issues

## IP Rights: Overview



# Internet of Everything / 4th Industrial Revolution



#### Characteristics of Software



#### Characteristics of Software

#### Traditional products

- One creator/author
- Direct application of products / methods
- Limited interoperability with other products / methods
- Straight forward distribution routes

→One innovation == one (main) IP right

#### Software

- Many actors, various distribution routes
- Is software technical or a creation of mind?

#### Protection of Software



**Patent** 

Software

?

Copyright

**Trademark** 

Design

**Trade Secret** 

#### **Protection of Software: Patents**



**Patent** 



Software

Trademark

Copyright

Design

**Trade Secret** 



# Protection of Software: Designs





#### **Protection of Software: Trademarks**





# Protection of Software: Copyright





#### **Protection of Software: Trade Secrets**





# The EPO approach towards Software

# Internet of Everything / Industry 4.0



#### Software at the EPO

2

Software = "Computer-implemented Inventions" (CII)

#### Two hurdles approach

- 1<sup>st</sup> hurdle: **Technical character**, Art. 52 (2) EPC, e.g. "computer-implemented"
- Claims may contain a mix of technical and non-technical features
- 2<sup>nd</sup> hurdle: Assessment of novelty & inventive step based on features that contribute to the technical character
  - Art. 54, 56 EPC, EPO-GL G-VII, 5.4, T 641/00 COMVIK
    - Do the individual "software" steps contribute to the technical character?

# Software at the EPO – Inventive Step



#### Assessment of Inventive Step for CIIs

- Features that do not contribute to the technical character form part of the objective technical problem.
- As a consequence, these "non-technical" features are known to the skilled person as a "requirement specification"
- Presence of inventive step is determined based on:
  - Technical distinguishing features
  - Distinguishing features that contribute to the technical character, hence, have a technical effect

#### Where are Technical Features (at the EPO)?



# Artificial Intelligence

### Artificial Intelligence

Artificial intelligence, AI, is intelligence demonstrated by machines

- "Al core" reacts on external input, such as data / sensors / feedback
- classifies input to take decisions or provide recommendations (inference)



# **Training**

Al core has to be trained for each particular task



### Guidelines for Examination / AI

- "Artificial intelligence and machine learning are based on computational models and algorithms [...]. Such computational models and algorithms are per se of an abstract mathematical nature, irrespective of whether they can be "trained" based on training data."
  - "expressions such as "support vector machine", "reasoning engine" or "neural network" [...] usually refer to abstract models devoid of technical character"

Guidelines for Examination, G-II, 3.3.1

→ Al/machine learning technology is examined the same way as CIIs

### Guidelines for Examination / AI

- Fields of technology / technical contribution of AI inventions
  - use of neural networks in a heart-monitoring apparatus for the purpose of identifying irregular heartbeats
  - classification of digital images, videos, audio or speech signals based on low-level features (e.g. edges or pixel attributes for images) are further typical technical applications of classification algorithms.
  - Generating a training set and training a classifier may also contribute to the technical character if they support achieving a technical purpose
- However: "classifying text documents solely in respect of their textual content is <u>not</u> regarded to be per se a technical purpose but a linguistic one"

Guidelines for Examination, G-II, 3.3.1



# Patenting AI Technology

- I. Applying (known) AI for a particular technical purpose
- II. Modifying / adapting AI technology for a technical purpose
  - Selecting and configuring training data
  - Adapting the learning approach
  - Determining coefficients/layout for the technical purpose
- III. Underlying technologies
  - Machine-learning approach
  - Layout of "AI core"
  - Classification technology



Link to technical area recommendable



# Blockchain Technology

#### Blockchain

- Blockchain technology specifies a digital environment that manages transactions and keeps records of transactions
- Transactions in the digital environment are governed by data blocks that are arranged as chains → blockchain
- Blockchains are stored in a decentralized manner → distributed ledger
  - Each entity stores and updates a copy of the blockchain
  - Each entity stores an identical copy. Proposals for update originate from miners or validators + consensus finding
- Data blocks in the blockchain are cryptographically bound to each other: they cannot be manipulated

# Patenting Blockchain Technology

- Applying (known) blockchain technology in a technical area
- II. Modifying / adapting blockchain technology for a technical purpose
  - For example, adapting blockchains for identity authentication, product tagging (drugs, food) or tracking
- III. Underlying technologies
  - Cryptography: PKI
  - Block construction
  - storage / maintenance: distributed ledger
  - Communication protocols



Link to technical area recommendable



#### **Technical Context**

- Technical context is essential and should be provided in an EP application
  - Technical improvements
  - Technical application area
  - Technical/functional data
- Change of perspective: Invention has to be assessed in view of:
  - Hardware or network infrastructure (optimizing, accelerating, securing)
  - Interaction of components in a device or in a network (communication protocols)
  - Monitoring of infrastructure or environmental information (tracking, etc.)
  - Impact on infrastructure or environment



#### What your Patent Attorneys needs to know...

- Be specific!
  - "Performing a task using Al" is not sufficient
  - Concrete specification of technical environment / implementation details
  - Deconstruct an AI solution and consider elements separately
  - What are the technical problems solved?

|           |           |                      | onfiguration |           | 1000      |
|-----------|-----------|----------------------|--------------|-----------|-----------|
| A         | A-LRN     | В                    | C            | D         | E         |
| 11 weight | 11 weight | 13 weight            | 16 weight    | 16 weight | 19 weight |
| layers    | layers    | layers               | layers       | layers    | layers    |
|           | i         | nput (224 $\times$ 2 | 24 RGB imag  | e)        |           |
| conv3-64  | conv3-64  | conv3-64             | conv3-64     | conv3-64  | conv3-64  |
|           | LRN       | conv3-64             | conv3-64     | conv3-64  | conv3-64  |
| 7         |           |                      | pool         |           |           |
| conv3-128 | conv3-128 | conv3-128            | conv3-128    | conv3-128 | conv3-128 |
|           |           | conv3-128            | conv3-128    | conv3-128 | conv3-128 |
|           | 7         |                      | pool         |           |           |
| conv3-256 | conv3-256 | conv3-256            | conv3-256    | conv3-256 | conv3-250 |
| conv3-256 | conv3-256 | conv3-256            | conv3-256    | conv3-256 | conv3-256 |
|           |           |                      | conv1-256    | conv3-256 | conv3-256 |
|           |           |                      |              |           | conv3-25  |
|           |           |                      | pool         |           |           |
| conv3-512 | conv3-512 | conv3-512            | conv3-512    | conv3-512 | conv3-512 |
| conv3-512 | conv3-512 | conv3-512            | conv3-512    | conv3-512 | conv3-512 |
|           |           |                      | conv1-512    | conv3-512 | conv3-512 |
|           |           |                      |              |           | conv3-512 |
|           |           |                      | pool         |           |           |
| conv3-512 | conv3-512 | conv3-512            | conv3-512    | conv3-512 | conv3-512 |
| conv3-512 | conv3-512 | conv3-512            | conv3-512    | conv3-512 | conv3-512 |
|           |           |                      | conv1-512    | conv3-512 | conv3-512 |
|           |           |                      |              |           | conv3-512 |
|           |           |                      | pool         |           |           |
|           |           |                      | 4096         |           |           |
|           |           |                      | 4096         |           |           |
|           |           |                      | 1000         |           |           |
|           |           | soft-                | -max         |           |           |

- Examples for AI
  - Model architecture
  - Databases, annotations
  - Feature Extraction
  - Training Algorithm any test results
  - Trained model (coefficients) ?



VGG16 CNN Architecture



# Thank you! Q&A

**Dr. Jakob Valvoda** valvoda@boehmert.de

Boehmert & Boehmert Pettenkoferstraße 22 80336 München Deutschland

T +49-89-55 96 80 F +49-89-55 96 85 090

